Мощные биполярные транзисторы и каскады Дарлингтона
Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.
Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.
PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)
NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Призываю всех не путаться, работа этих схем будет подробно расписана далее.
На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.
Схемы подключения NPN и PNP выходов датчиков
На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.
Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Полевые побеждают, почему?
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.
В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.
Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.
В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.
Замена датчиков
Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:
- PNP NO
- PNP NC
- NPN NO
- NPN NC
Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.
Это реализуется такими способами:
- Переделка устройства инициации – механически меняется конструкция.
- Изменение имеющейся схемы включения датчика.
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.
Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:
PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.
Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).
Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.
Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.
Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.
Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.
Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.
Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.
Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.
Как проверить транзистор мультиметром.
Здравствуйте уважаемые читатели сайта . Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления
( h21э ) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Мы знаем, что транзистор имеет два p-n перехода
, причем каждый переход можно представить в виде диода (полупроводника). Поэтому можно утверждать, что транзистор — это два диода включенных встречно , а точка их соединения будет являться « базой ».
Отсюда получается, что один диод образован выводами, например, базы
и коллектора , а другой диод выводами базы и эмиттера . Тогда нам будет достаточно проверить прямое и обратное сопротивление этих диодов, и если они исправны, значит, и транзистор работоспособен. Все очень просто.
Начнем с транзисторов структуры (проводимость) p-n-p
. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода . Если стрелка направлена к базе, значит это структура p-n-p , а если от базы, значит это транзистор структуры n-p-n . Смотрите рисунок выше.
Так вот, чтобы открыть p-n-p транзистор, на вывод базы подается отрицательное напряжение
(минус). Мультиметр переводим в режим измерения сопротивлений на предел « 2000 », можно в режиме « прозвонка » — не критично.
щупом (черного цвета) садимся на вывод базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера — так называемые коллекторный и эмиттерный переходы. Если переходы целы, то их прямое сопротивление будет находиться в пределах 500 – 1200 Ом.
Теперь проверяем обратное сопротивление
коллекторного и эмиттерного переходов. Плюсовым щупом садимся на вывод базы, а минусовым касаемся выводов коллектора и эмиттера. На этот раз мультиметр должен показать большое сопротивление на обоих p-n переходах.
В данном случае на индикаторе высветилась «1
», означающая, что для предела измерения « 2000 » величина сопротивления велика, и составляет более 2000 Ом. А это говорит о том, что коллекторный и эмиттерный переходы целы, а значит, наш транзистор исправен.
Таким способом можно проверять исправность транзистора и на печатной плате, не выпаивая его из схемы
Конечно, встречаются схемы, где p-n переходы транзистора сильно зашунтированы низкоомными резисторами. Но это редкость. Если при измерении будет видно, что прямое и обратное сопротивление коллекторного или эмиттерного переходов слишком мало, тогда придется выпаять вывод базы.
Исправность транзисторов структуры n-p-n
проверяется так же, только уже к базе подключается плюсовой щуп мультиметра.
Мы рассмотрели, как проверить исправный транзистор. А как понять, что транзистор неисправный
? Здесь тоже все просто. Если прямое и обратное сопротивление одного из p-n переходов бесконечно велико, т.е. на пределе измерения «2000» и выше мультиметр показывает «1», значит, этот переход находится в обрыве, и транзистор однозначно неисправен.
Вторая распространенная неисправность транзистора – это когда прямое и обратное сопротивления одного из p-n переходов равны нулю или около того. Это говорит о том, что переход пробит, и транзистор не годен.
И тут уважаемый читатель Вы меня спросите: — А где у этого транзистора находится база, коллектор и эмиттер. Я его вообще в первый раз вижу. И будете правы. А ведь действительно, где они? Как их определить? Значит, будем искать.
В первую очередь, нужно определить вывод базы
. Плюсовым щупом мультиметра садимся, например, на левый вывод транзистора, а минусовым касаемся среднего и правого выводов. При этом смотрим, какую величину сопротивления показывает мультиметр.
Между левым
и средним выводами величина сопротивления составила « 1 », а между левым и правым мультиметр показал 816 Ом. На данном этапе это нам ничего не говорит. Идем дальше. Плюсовым щупом садимся на средний вывод, а минусовым касаемся левого и правого .
Здесь результат измерения получился почти таким же, как и на рисунке выше. Между средним
и левым величина сопротивления составила « 1 », а между средним и правым получилось 807 Ом. Тут опять ничего не ясно, поэтому идем дальше.
Теперь садимся плюсовым щупом на правый
вывод, а минусовым касаемся среднего и левого выводов транзистора.
На рисунке видно, что величина сопротивления между правым-средним
и правым-левым выводами одинаковая и составила бесконечность. То есть получается, что мы нашли и измерили обратное сопротивление обоих p-n переходов транзистора. В принципе, уже можно смело утверждать, что вывод базы найден. Он оказался правым . Но нам еще надо определить, где у транзистора коллектор и эмиттер. Для этого измеряем прямое сопротивление переходов. Минусовым щупом садимся на вывод базы , а плюсовым касаемся среднего и левого выводов.
Величина сопротивления на левой ножке транзистора составила 816 Ом – это эмиттер
, а на средней 807 Ом – это коллектор .
Величина сопротивления коллекторного перехода всегда будет меньше по отношению к эмиттерному. Т.е. вывод коллектора будет там, где сопротивление p-n перехода меньше, а эмиттера, где сопротивление p-n перехода больше.
Отсюда делаем вывод:
1. Транзистор структуры p-n-p; 2. Вывод базы находится с правой стороны; 3. Вывод коллектора в середине; 4. Вывод эмиттера – слева.
А если у Вас остались вопросы, то можно дополнительно посмотреть мой видеоролик о проверке обычных транзисторов мультиметром.
Ну и напоследок надо сказать, что транзисторы бывают малой, средней мощности и мощные. Так вот, у транзисторов средней мощности и мощных, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Такие транзисторы устанавливаются на специальные радиаторы, предназначенные для отвода тепла от корпуса транзистора.
Зная расположение коллектора, базу и эмиттер определить будет легко. Удачи!
Условное обозначение датчика приближения
На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.
НО НЗ датчики. Принципиальные схемы.
На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.
Как работает NPN транзистор
Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется через соединение эмиттер-база, а обратное смещение применяется через соединение коллектор-база. Напряжение прямого смещения VEB мало по сравнению с напряжением обратного смещения VCB.
Эмиттер NPN-транзистора сильно легирован. Когда прямое смещение прикладывается к эмиттеру, большинство носителей заряда движутся к базе. Это вызывает протекание тока эмиттера IE. Электроны входят в материал P-типа и соединяются с дырками.
База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют ток базы IB. Ток базы проникает в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллектора. Таким образом, привлекают или собирают электроны на коллекторе.
Весь ток эмиттера входит в базу. Таким образом, можно сказать, что ток эмиттера является суммой токов коллектора и базы.
Цветовая маркировка выводов датчиков
Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.
Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.
Вот эта маркировка.
- Синий (Blue) – Минус питания
- Коричневый (Brown) – Плюс
- Чёрный (Black) – Выход
- Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.
Скачать инструкции и руководства на некоторые типы индуктивных датчиков:
• Autonics_PR / Индуктивные датчики приближения. Подробное описание параметровэ, pdf, 135.28 kB, скачан: 2639 раз./ • Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1500 раз./
• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 1963 раз./
• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1509 раз./
• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2063 раз./
• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3090 раз./
Работа транзистора с нагрузкой
⇐ ПредыдущаяСтр 6 из 8Следующая ⇒
При работе транзистора в электронных схемах, в цепи его электродов подключают не только источники постоянных смещений, но и источники сигналов, а также элементы нагрузки. На рис. 16 представлена схема включения транзистора с нагрузкой и источником питания.
Для коллекторной цепи справедливо .
Это уравнение определяет положение линии нагрузки.
Простейший случай – работа транзистора в качестве усилителя низкочастотного синусоидального сигнала малой амплитуды. Под термином «малого сигнала» понимают такой сигнал, амплитуда которого настолько мала, что в пределах изменения напряжения сигнала статические характеристики можно считать линейными, а сам транзистор рассматривать как линейный четырехполюсник.
Для работы транзистора в качестве усилителя необходимо обеспечить определенные токи и напряжения на полюсах транзистора, т.е. задать рабочую точку. Рабочая точка определяется смещениями на эмиттерном и коллекторном переходах, которые задаются источниками напряжения ЕК и UБЭО.
Рассмотрим связь входных и выходных характеристик транзистора включенного по схеме с ОЭ (рис. 17).
При усилении слабых сигналов рабочая точка должна находиться в активной области статических характеристик.
Рабочая точка Б′ на выходных характеристиках определяется с помощью входной характеристики.
Принцип работы усилителя заключается в следующем. При воздействии сигнала Uвх напряжение ЕБЭО суммируется с напряжением сигнала и рабочая точка Б перемещается между А и С на входной характеристики транзистора. Когда амплитуда сигнала мала, участок АС можно заменить отрезком прямой. Перемещение рабочей точки Б вызывает изменение тока базы IБ. Поскольку IК ≈ βIБ, то изменением тока IБ приводит к соответствующим изменениям тока коллектора IК. Протекая через RК ток IК создает на нем падение напряжения Uвых, которое является усиленной копией входного сигнала Uвх.
Отметим, что Uвых и Uвх сдвинуты по фазе на 1800.
Важнейшими факторами, определяющими усилительные свойства транзисторов являются:
— возможность эффективного управления выходным током IК за счет входного сигнала (обеспечивается прямым смещением эмиттерного перехода),
— минимальная реакция выходной цепи (обеспечивается обратным смещением коллекторного перехода) (слабая зависимость IК от UКБ, т.к. коллекторный переход смещен обратно).
На выходных характеристиках можно выделить ряд зон, характеризующие режимы работы транзистора. Активная область ограничена областью насыщения (I) и отсечки (II), в которых транзистор теряет усилительные свойства, превышение UКдоп (III) или PКдоп (IV) выводит транзистор из строя, а превышением IКдоп ухудшает усилительные свойства вследствие падения β (V).